a2 United States Patent
Aliseychik et al.

US009124297B2

US 9,124,297 B2
Sep. 1, 2015

(10) Patent No.:
(45) Date of Patent:

(54) TRAPPING-SET DATABASE FOR A
LOW-DENSITY PARITY-CHECK DECODER
Applicant:

(71) LSI Corporation, San Jose, CA (US)

(72) Inventors: Pavel Aleksandrovich Aliseychik,
Moscow (RU); Denis Vasilevich
Parfenov, Moscow (RU); Alexander
Nikolaevich Filippov, Moskow (RU);
Alexander Alexandrovich Petyushko,
Moscow (RU); Denis Vladimirovich
Parkhomenko, Moscow (RU)

(73)

Assignee: Avago Technologies General IP

(Singapore) Pte. Ltd., Singapore (SG)

otice: ubject to any disclaimer, the term of this

*) Noti Subj y disclai h fthi
patent is extended or adjusted under 35

U.S.C. 154(b) by 80 days.

Appl. No.: 13/915,823

@

(22) Filed: Jun. 12,2013

(65) Prior Publication Data

US 2014/0122960 A1 May 1, 2014

(30) Foreign Application Priority Data

Nov.1,2012 (RU) 2012146685

(51) Imt.ClL
HO04L 1/00
HO3M 13/11
U.S. CL
CPC i HO3M 13/1142 (2013.01)
Field of Classification Search

CPC e HOAL 1/0057
USPC 714/752,773, 759, 780
See application file for complete search history.

(2006.01)
(2006.01)
(52)

(58)

(56) References Cited
U.S. PATENT DOCUMENTS
3,755,779 A 8/1973 Price
4,295,218 A 10/1981 Tanner
5,048,060 A 9/1991 Arai et al.
5,721,745 A 2/1998 Hladik et al.
5,734,962 A 3/1998 Hladik et al.
5,757,795 A 5/1998 Schnell
(Continued)
FOREIGN PATENT DOCUMENTS
CN 101174838 A 5/2008
CN 101174839 A 5/2008
(Continued)
OTHER PUBLICATIONS

Chen, J., et al., “Density Evolution for Two Improved BP-Based
Decoding Algorithms of LDPC Codes,” Communications Letters,
IEEE, May 2002, vol. 6, No. 5, pp. 208-210.

(Continued)

Primary Examiner — Fritz Alphonse
(74) Attorney, Agent, or Firm — Hamilton DeSanctis & Cha

(57) ABSTRACT

A machine-implemented method of generating trapping-set
information for use in LDPC-decoding processing of read
signals generated, e.g., by sensing a storage medium, such as
a magnetic platter. In one embodiment, the method can be
implemented as an add-on to any other trapping-set search
method in which the discovered trapping sets are evaluated to
determine their influence on the overall bit-error rate and/or
error-floor characteristics of the LDPC decoder. The method
can advantageously reuse at least some of the computational
results obtained during this evaluation, thereby requiring a
relatively small amount of additional computations, while
providing a significant benefit of discovering many more
trapping sets in addition to the ones that are being evaluated.

20 Claims, 5 Drawing Sheets

100

M0~ qolket 150 sestouTion [~
112~ ONTROAER 172

20~ e DOPP UNIT |~ 170
122~ - 152

132 STORAGE 142
MEDIUM

102/

\104

US 9,124,297 B2

(56)

5,768,270
6,023,783
6,236,686
6,307,901
6,550,023
6,678,843
6,745,157
6,760,879
6,888,897
6,910,000
7,143,333
7,181,676
7,219,288
7,237,181
7,284,164
7,296,216
7,340,671
7,353,444
7,373,581
7,457,367
7,689,888
7,725,800
7,730,377
7,739,558
7,752,523
7,805,642
7,809,089
7,895,500
7,904,793
7,941,737
7,949,927
8,010,869
8,020,070
8,037,394
8,046,658
8,051,363
8,103,931
8,127,209
8,151,171
8,156,409
8,161,345
8,171,367
8,205,134
8,205,144
8,213,342
8,214,719
8,219,878
8,255,763
8,301,984
8,307,253
8,327,235
8,407,567
8,468,429
8,683,299
8,700,976
2002/0062468
2002/0166095
2005/0132260
2005/0193320
2005/0204255
2005/0204264
2005/0283707
2006/0013306
2006/0036928
2006/0107181
2006/0115802
2006/0285852
2007/0011569
2007/0011573
2007/0011586
2007/0044006
2007/0071009
2007/0089018
2007/0089019
2007/0124652

References Cited

U.S. PATENT DOCUMENTS

A

A

Bl
Bl
Bl
B2
Bl
B2
Bl
Bl
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
Bl
Bl
Bl
B2
B2
B2
B2
B2
B2
B2
B2
B2
Bl
B2
Bl
B2
B2
B2
B2
B2
Bl
B2
Bl
Bl
Bl
Bl
B2
B2
B2
B2
B2
B2
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

* %

6/1998
2/2000
5/2001
10/2001
4/2003
1/2004
6/2004
7/2004
5/2005
6/2005
11/2006
2/2007
5/2007
6/2007
10/2007
11/2007
3/2008
4/2008
5/2008
11/2008
3/2010
5/2010
6/2010
6/2010
7/2010
9/2010
10/2010
2/2011
3/2011
5/2011
5/2011
8/2011
9/2011
10/2011
10/2011
11/2011
1/2012
2/2012
4/2012
4/2012
4/2012
5/2012
6/2012
6/2012
7/2012
7/2012
7/2012
8/2012
10/2012
11/2012
12/2012
3/2013
6/2013
3/2014
4/2014
5/2002
11/2002
6/2005
9/2005
9/2005
9/2005
12/2005
1/2006
2/2006
5/2006
6/2006
12/2006
1/2007
1/2007
1/2007
2/2007
3/2007
4/2007
4/2007
5/2007

Ha-Duong
Divsalar et al.
Kamishima
Yu et al.
Brauch et al.
Giulietti et al.
Weiss et al.
Giese et al.
Nazari et al.
Yedidia et al.
Blankenship et al.
Hocevar
Dielissen et al.
Richardson
Yoshida

Shen et al.
Jones et al.
Owsley et al.
Okamura et al.

Farhang-Boroujeny et al.

Kan et al.

Yang et al.

Hocevar

Farjadrad et al.
Chaichanavong et al.
Farjadrad
Kuroyanagi et al.
Sun et al.

Mokhlesi et al.
Gopalakrishnan et al.
Park et al.

Wejn et al.

Langner et al.
Djurdjevic et al.
Heinrich et al.

Liu

Wang et al.

Zhang et al.
Blanksby
Patapoutian et al.
Graef

Gao et al.
Harrison et al.
Yadav
Haruna et al.
Sheng et al.
Varnica et al.
Yang et al.
Zhang et al.
Gunnam
Gunnam
Gunnam
Gunnam
Gunnam et al.
Gunnam et al.
Nagase et al.
Lavi et al.
Kyung et al.
Varnica et al.
Yeh et al.
Yusa

Sharon et al.
Kim et al.
Eroz et al.
Dave et al.
Reynolds

Xi et al.

Vila Casado et al.
Farjadrad et al.
Belogolovyi et al.
Yang et al.
Nagaraj et al.
Tang et al.

Tang et al.

Litsyn et al.

.............. 714/774
.............. 714/774

Page 2
2007/0147481 Al 6/2007 Bottomley et al.
2007/0153943 Al 7/2007 Nissila
2007/0162788 Al 7/2007 Moelker
2007/0220408 Al 9/2007 Huggett et al.
2007/0234178 Al 10/2007 Richardson et al.
2007/0234184 Al 10/2007 Richardson
2008/0049869 Al 2/2008 Heinrich et al.
2008/0082868 Al 4/2008 Tran et al.
2008/0104460 Al 5/2008 Kanaoka
2008/0104485 Al 5/2008 Lyakh et al.
2008/0109701 Al 5/2008 Yuetal.
2008/0126910 Al 5/2008 Venkatesan et al.
2008/0148129 Al 6/2008 Moon et al.
2008/0163032 Al 7/2008 Lastras-Montano
2008/0235561 Al 9/2008 Yang
2008/0276156 Al 11/2008 Gunnam et al.
2008/0301517 Al 12/2008 Zhong
2008/0301521 Al 12/2008 Gunnam et al.

2009/0019338 Al 1/2009 Obuchi et al.
2009/0063931 Al 3/2009 Rovini et al.
2009/0083609 Al 3/2009 Yue etal.
2009/0132897 Al 5/2009 Xuetal.
2009/0150745 Al 6/2009 Langner et al.
2009/0235146 Al 9/2009 Tan et al.
2009/0259912 Al 10/2009 Djordjevic et al.
2009/0273492 Al 11/2009 Yang et al.
2009/0307566 Al 12/2009 No etal.
2009/0319860 Al 12/2009 Sharon et al.
2010/0037121 Al 2/2010 Jin etal.
2010/0042806 Al 2/2010 Gunnam
2010/0042890 Al 2/2010 Gunnam
2010/0042892 Al 2/2010 Gunnam
2010/0042893 Al 2/2010 Gunnam
2010/0042898 Al 2/2010 Gunnam
2010/0042902 Al 2/2010 Gunnam
2010/0042903 Al 2/2010 Gunnam
2010/0050043 Al 2/2010 Savin
2010/0058152 Al 3/2010 Harada
2010/0088575 Al 4/2010 Sharon et al.
2011/0041029 Al 2/2011 Yedidia et al.
2012/0135285 Al 5/2012 Iwama et al.
2012/0139074 Al 6/2012 Abe
2013/0124590 Al 5/2013 Gunnam et al.

FOREIGN PATENT DOCUMENTS

EP 1926102 Al 5/2008
EP 1926142 Al 5/2008
JP 2001251384 A 9/2001
JP 2004005854 A 1/2004
JP 2005020505 A 1/2005
JP 2005500513 A 1/2005
JP 2007036495 A 11/2007
JP 2008112516 A 5/2008
JP 2009100222 A 5/2009
™ 200814544 A 3/2008
WO WO003092170 A1 11/2003
WO WO02004079563 Al 9/2004
WO WO02008004215 A2 1/2008
WO WO 2010/019168 Al 2/2010
WO WO02010101578 Al 9/2010
OTHER PUBLICATIONS

Chen, J., et al., “Near Optimum Universal Belief Propagation Based
Decoding of Low-Density Parity Check Codes,” IEEE Transations on
Communications Letters, Mar. 2002, vol. 50, No. 3, pp. 406-414.
Karkooti, M., et al., “Semi-Parallel Reconfigurable Architectures for
Real-Time LDPC Decoding,” Information International Conference
on Technology: Coding and Computing Proceedings, Apr. 2004, vol.
1, pp. 579-585.

Tzu-chieh, K., “Flexible Decoder Architectures for Irregular QC-
LDPC Code,” 51st Midwest Symposium on Circuits and Systems,
Aug. 10-13, 2008, pp. 229-232.

Notification of the Second Office Action; Jun. 27, 2014 for the cor-
responding CN Application No. 200980100343 .2.

US 9,124,297 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Kang, J., et al., “A Two-Stage Iterative Decoding of LDPC Codes for
Lowering Error Floors,” IEEE Global Telecommunications Confer-
ence, 2008, pp. 1-4.

Sharon, E, et al., “An Efficient Message-Passing Schedule for LDPC
Decoding,” 2004, XP002713218, Retrieved from http://www.eng.
biu.ac.il/goldbej/papers/engisreal .pdf on Sep. 19, 2013, 4 pages.
Pusane, A .E.; Costello, D.J.; Mitchell, D.G.M;, “Trapping Set Analy-
sis of Protograph-Based LDPC Convolutional Codes,” Information
Theory, 2009. ISIT 2009. IEEE International Symposium on, vol.,
No., pp. 561-565, Jun. 28, 2009-Jul. 3, 2009.

Laendner, S.; Milenkovic, O.;, “LDPC Codes Based on Latin
Squares: Cycle Structure, Stopping Set, and Trapping Set Analysis,”
Communications, IEEE Transactions on, vol. 55, No. 2, pp. 303-312,
Feb. 2007.

Dehkordi, M.K,; Banihashemi, A.H.;, “An Efficient Algorithm for
Finding Dominant Trapping Sets of LDPC Codes,” Turbo Codes and
Tterative Information Processing (ISTC), 2010 6th International
Symposium on, pp. 444-448, Sep. 6-10, 2010.

D. MacKay and M. Postol, “Weaknesses of margulis and ramanujan-
margulis low- density parity-check codes,” Electronic Notes in Theo-
retical Computer Science, vol. 74, 2003.

B. Xia and W. E. Ryan, “On importance sampling for linear block
codes,” Proc. 2003 IEEE International Conference on Communica-
tions, vol. 4, pp. 2904-2908, May 2003.

L. Dolecek, Z. Zhang, M. Wainwright, V. Anantharam, and B.
Nikoli’c, “Evaluation of the low frame error rate performance of
LDPC codes using importance sampling,” 2007 IEEE Inform.
Theory Workshop, Sep. 2-6, 2007.

Matsuoka, K., et al., “Improvement of Turbo Equalization with
LDPC Code,” IEICE Transaction, Apr. 1, 2007, vol. J90-B, No. 4, pp.
432-436 with partial English translation.

Lee, MK, et al., “Adaptive Turbo Equalizer with Stopping Rule
Based on LDPC Codes,” ISIT, 2009, pp. 928-932.

K. Gunnam “Area and Energy Efficient VLSI Architectures for Low-
Density Parity-Check Decoders Using an On-The-Fly Computation”
dissertation at Texas A&M University, Dec. 2006.

Cavus, E., et al., “Low BER performance estimation of LDPC codes
via application of importance sampling to trapping sets,” IEEE Trans-
actions on Communications, vol. 57, No. 7, pp. 1886-1888, Jul. 2009.
Koetter, R., et al. “Turbo equalization,” Signal Processing Magazine,
IEEE, vol. 21, No. 1, pp. 67-80, Jan. 2004.

Ryan, W. E., et al., “Channel Codes: Classical and Modern,” Cam-
bridge University Press, 2009, 710 pages.

Casado, V., et al., “Informed Dynamic Scheduling for Belief-Propa-
gation Decoding of LDPC Codes,” IEEE International Conference on
Communications, Jun. 24-28, 2007, pp. 932-937.

Presman, N., et al., “Efficient Layers-based Schedules for Iterative
Decoding of LDPC Codes,” IEEE International Symposium on Infor-
mation Theory, Jul. 6-11, 2008, pp. 1148-1152.

Radosavljevic, P, et al., “Optimized Message Passing Schedules for
LDPC Decoding,” Conference Record of the Thirty-Ninth Asilomar
conference on Signals, Systems and Computers, Oct. 28, 2005-Nov.
1, 2005, pp. 591-595.

Zheng, H., et al., “MMSE-Based Design of Scaled and Offset BP-
Based Decoding Algorithms on the Fast Rayleigh Fading Channel,”
IEEE International Symposium on Circuits and Systems, May 24,
2006, pp. 2061-2064.

Sakai, R., et al., “Reduced Complexity Decoding Based on Approxi-
mation of Update Function for Low-Density Parity-Check Codes,”
Transactions of the Institute of Electronics, Information and Com-
munication Engineers, Feb. 1, 2007, vol. J90-A, No. 2, pp. 83-91.
Kiran Gunnam, Gwan Choi, Mark Yeary—“An LDPC decoding
schedule for memory access reduction”, IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP) 2004,
pp. 173-176, vol. I5.

Stefan Landner, Olgica Milenkovic—*“Algorithmic and Combinato-
rial Analysis of Trapping Sets in Structured LDPC Codes”, Interna-
tional Conference on Wireless Networks, Communications and
Mobile Computing, 2005, pp. 630-635, vol. 1.

Hao Zhong,Tong Zhang—*Block—IDPC: A Practical LDPC Cod-
ing System Design Approach”, IEEE transactions on circuits and
systems—I: Regular Papers, Apr. 2005, pp. 766-775, vol. 52.

Kiran K. Gunnam, Gwan S. Choi, Weihuang Wang, Funcheol Kim,
and Mark B. Yeary—*“Decoding of Quasi-cyclic LDPC Codes Using
an On-the-Fly Computation”, Fortieth Asilomar Conference on Sig-
nals, Systems and Computers (ACSSC), 2006, pp. 1192-1199.
Thomas J. Richardson and Rudiger L. Urbanke—*Efficient Encod-
ing of Low-Density Parity-Check Codes”, IEEE Transactions on
Information Theory, Feb. 2001,pp. 638-656,vol. 47, No. 2.

Tom Richardson—“Error Floors of LDPC Codes”, IEEE Transac-
tions on Information Theory, Feb. 2001, pp. 1426-1435,vol. 47, No.
2.

E. Papagiannis, C. Tjhai, M. Ahmed, M. Ambroze, M. Tomlinson—
“Improved Iterative Decoding for Perpendicular Magnetic Record-
ing”, The ISCTA 2005 Conference on Feb. 4, 2005,pp. 1-4.

Kiran K. Gunnam, Gwan S. Choi, and Mark B. Yeary—*“A Parallel
VLSI Architecture for Layered Decoding for Array LDPC Codes”,
20th International Conference on VLSI Design, 2007,6th Interna-
tional Conference on Embedded Systems, Jan. 2007 pp. 738-743.
David J.C. MacKay—*Information Theory, Inference, and Learning
Algorithms”, Cambridge University Press Sep. 2003, p. 640.

R. Michael Tanner, Deepak Sridhara, Arvind Sridharan, Thomas E.
Fuja, and Daniel J. Costello, Jr—“LDPC Block and Convolutional
Codes Based on Circulant Matrices”, IEEE Transactions on Infor-
mation Theory, Dec. 2004, pp. 2966-2984, vol. 50, No. 12.

Amin Shokrollahi—“LDPC Codes: An Introduction, In Coding,
Cryptography and Combinatorics”,Computer Science and Applied
Logic, Birkhauser, Basel, 2004, pp. 85-110, vol. 23.

Yang Han and William E. Ryan—“LDPC Decoder Strategies for
Achieving Low Error Floors”, Proceedings of Information Theory
and Applications Workshop, San Diego, CA, Jan. 2008, pp. 1-10.
Mohammad M. Mansour and Naresh R. Shanbhag—*T.ow Power
VLSI decoder architectures for LDPC codes” International Sympo-
sium on Low Power Electronics and Design Proceedings of the 2002
, ICIMS Research Center, 2002, pp. 284-289.

Dale E. Hocevar—“A Reduced Complexity Decoder Architecture
Via Layered Decoding of LDPC Codes”, IEEE Workshop on Signal
Processing Systems, 2004, pp. 107-112.

Robert G. Gallager—“Low Density
Codes”,Cambridge Mass Jul. 1963,p. 90.

T. Richardson and R. Urbanke—“Modern Coding Theory”, Cam-
bridge University Press, Preliminary version—Oct. 18, 2007, p. 590.
Kiran Gunnam, Gwan Choi, Weihuang Wang, Mark Yeary—“Multi-
Rate Layered Decoder Architecture for Block LDPC Codes of the
IEEE 802, 11n Wireless Standard”, IEEE International Symposium
on Circuits and Systems (ISCAS) 2007, pp. 1645-1648.

Kiran K. Gunnam, Gwan S. Choi, Mark B. Yeary, Shaohua Yang and
Yuanxing Lee—*“Next Generation Iterative LDPC Solutions for
Magnetic Recording Storage”, 42nd Asilomar Conference on Sig-
nals, Systems and Computers, 2008, pp. 1148-1152.

D.J.C. MacKay and R.M. Neal—"“Near Shannon limit performance
oflow density parity check codes”, Electronics Letters Mar. 13, 1997,
pp. 458-459, vol. 33 No. 6.

Jinghu Chen, Ajay Dholakia, Evangelos Eleftheriou, Marc P. C.
Fossorier, Xiao-Yu Hu, “Reduced-Complexity Decoding of LDPC
Codes”, IEEE Transactions on Communications, Aug. 2005, pp.
1288-1299,vol. 53, No. 8.

Kiran K. Gunnam, Gwan S. Choi, Mark B. Yeary and Mohammed
Atiquzzaman—*“VLSI Architectures for Layered Decoding for
Irregular LDPC Codes of WiMax”, IEEE International Conference
on Communications (ICC), 2007, pp. 4542-4547.

Andrew J. Blanksby and Chris J. Howland— A 690-mW 1-Gb/s
1024-b, Rate-1/2 Low-Density Parity-Check Code Decoder”, IEEE
Journal of Solid-State Circuits, Mar. 2002 .pp.404-412,vol. 37, No. 3.
Kiran Gunnam, Weihuang Wang, Gwan Choi, Mark Yeary—*“VLSI
Architectures for Turbo Decoding Message Passing Using Min-Sum
for Rate-Compatible Array LDPC Codes”, 2nd International Sym-
posium on Wireless Pervasive Computing (ISWPC), 2007, pp. 561-
566.

Kiran K. Gunnam, Gwan S. Choi, Weihuang Wang, and Mark B.
Yeary—“A Parallel VLSI Architecture for Layered

Parity—Check

US 9,124,297 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Decoding”,Proceedings of the 20th International Conference on
VLSI Design, 6th International Conference: Embedded Systems,
2007, pp. 738-743.

R.Michael Tanner—“A Recursive Approach to Low Complexity
Codes”, IEEE transaction on Information Theory, Sep. 1981,pp. 533-
547,vol. IT-27, No. 5.

Mohammad M. Mansour, and Naresh R. Shanbhag—*A 640-Mb/s
2048-Bit Programmable LDPC Decoder Chip”, IEEE Journal of
Solid-State Circuits, Mar. 2006, pp. 684-698,vol. 41, No. 3.

Badri N. Vellambi R, and Faramarz Fekri, “An Improved Decoding
Algorithm for Low-Density Parity-Check Codes over the Binary
Erasure Channel”, IEEE GLOBECOM 2005 proceedings, pp. 1182-
1186.

Yang Han, William E. Ryan—“Low-Floor Decoders for LDPC
Codes”, IEEE Transactions on Communications, vol. 57, No. 6, Jun.
2009, pp. 1663-1673.

PCT International Search Report dated Feb. 9, 2009 from Interna-
tional Application No. PCT/US 08/86537.

PCT International Search Report dated May 15, 2009 from Interna-
tional Application No. PCT/US 09/39279.

PCT International Search Report dated Feb. 12, 2009 from Interna-
tional Application No. PCT/US 08/86523.

PCT International Search Report dated May 28, 2009 from Interna-
tional Application No. PCT/US 09/41215.

PCT International Search Report dated May 15, 2009 from Interna-
tional Application No. PCT/US 09/39918.

Vila Casado, Andres I., Weng, Wen-Yen and Wesel, Richard D. “Mul-
tiple Rate Low-Density Parity-Check Codes with Constant
Blocklength,” IEEE 2004, pp. 2010-2014.

Vila Casado, Andres 1. “Variable-rate Low-denisty Parity-check
Codes with Constant Blocklength,” UCLA Technologies Available
for Licensing Copyright © 2009 The Regents of the University of
California. http://www.research.ucla.edw/tech/ucla05-074 htm (2
pages).

Vila Casado, Andres 1., Weng, Wen-Yen, Valle, Stefano and Wesel,
Richard D. “Multiple-Rate Low-Density Parity-Check Codes with
Constant Blocklength,” IEEE Transactions on Communications, vol.
57, No. 1, Jan. 2009; pp. 75-83.

Gunnam, Kiran K., Choi, Gwan S., and Yeary, Mark B., “Technical
Note on Iterative LDPC Solutions for Turbo Equalization,” Texas
A&M Technical Note, Department of ECE, Texas A&M University,
College Station, TX 77843, Jul. 2006 (available online at http://
dropzone.tamu.edu), pp. 1-5.

Richardson, Tom, “Error Floors of LDPC Codes,” Allerton Conf. on
Communication, Control and Computing, (Monticello, Illinois), Oct.
2003, pp. 1426-1435.

Cole, Chad A. and Hall, Eric K., “Analysis and Design of Moderate
Length Regular LDPC Codes with Low Error Floors,” Proc, 40th
Conf. Information Sciences and Systems, Princeton, NJ, 2006, 6 pgs.
Cavus et al., “A Performance Improvement and Error Floor Avoid-
ance Technique for Belief Propagation Decoding of LDPC Codes,”
IEEE 16th International Symposium, Personal, Indoor & Mobile
Radio Communications (PIMRC), Berlin, Germany Sep. 11-14,
2005, pp. 2386-2390.

Cavus, Enver et al., “An IS Simulation Technique for Very Low BER
Performance Evaluation of LDPC Codes,” IEEE International Con-
ference on Communications, Jun. 1, 2006, pp. 1095-1100.
Sripimanwat, K., “Turbo Code Applications: A Journey From a Paper
to Realization”, Oct. 26, 2005, Springer, p. 27.

Tuchler, M., et al., “Improved Receivers for Digital High Frequency
Waveforms Using Turbo Equalization,” Military Communications
Conference; Milcom 2002 Proceedings; Anaheim, CA, Oct. 7-10,
2002; IEEE Military Communications Conference, New York, NY;
IEEE; US, vol. 1, Oct. 7, 2002; pp. 99-104; XP002966498.
Alghonaim, E., et al., “Improving BER Performance of LDPC codes
Based on Intermediate Decoding Results,” Signal Processing and
Communications; 2007; ICSPC, 2007, IEEE International Confer-
ence; IEEE, Piscataway, NJ; USA; Nov. 24, 2007; pp. 1547-1550,
XP031380831.

K. Gunnam et al., “Value-Reuse Properties of Min-Sum for GF(q)”
(dated Oct. 2006) Dept. of ECE, Texas A&M University Technical
Note, published about Aug. 2010.

K. Gunnam et al., “Value-Reuse Properties of Min-Sum for GF (q)”
(dated Jul. 2008) Dept. of ECE, Texas A&M University Technical
Note, published about Aug. 2010.

* cited by examiner

U.S. Patent Sep. 1, 2015 Sheet 1 of 5 US 9,124,297 B2

FIG. 1
100
DATA DATA
M0~ source 150 | DESTINATION 180
CHANNEL |
! 12"" CONTROLLER — 172
LDPC
120~ o DOPP UNIT b~ 170
122~ - 162
WRITE FRONT=END
130~ pRocESSOR 0 vooue [180

[

192~ STORAGE 142
MEDIUM

102/ \104

U.S. Patent Sep. 1, 2015 Sheet 2 of 5 US 9,124,297 B2

FIG. 2
200

START 202

SELECT KNOWN TS |~ 204

\ i

Y

SELECT NOISE LEVEL |~ 206

Y

GENERATE
CODEWORD W

\ i

GENERATE NOISY LLRs -~ 210

208

Y

SUBJECT NOISY LLRs
10 LDPC DECODING |~ 212
PROCESSING

v 224

SAVE IN TS DATABASE
OR FOR EVALUATION

U.S. Patent Sep. 1, 2015 Sheet 3 of 5 US 9,124,297 B2

KNOWN TS’s

US 9,124,297 B2

Sheet 4 of 5

Sep. 1, 2015

U.S. Patent

= NO¥-SL [0y
N s £ ver
sl
- AavaeTT
,vy,, ALES SQOHLIN-dd /= 7O
A \
g2y | ory | oW
) 4300010 |
— 40551004 150d —— yora :
8T . 7 iy Lo 201
0T : .
v [yoLoarNI
g | 310N
997 oy /——
 ~09Y
4OLVYINI9
- QYOM00D
1]0)4 09y 7
vy oId

U.S. Patent

Sep. 1, 2015

FIG. 5

500

RECEIVE CANDIDATE
TS FOR EVALUATION

\ i

SELECT VALUE OF ¢,

\ i

GENERATE
CODEWORD W

\ i

GENERATE

NOISY LLRs

\ i

SUBJECT NOISY LLRs
T0 LDPC DECODING
PROCESSING

VALUE OF ¢
?

Sheet 5 of 5

502

506

— 508

510

512

US 9,124,297 B2

NEXT

No

SAME TS?

YES 524

SAVE IN TS DATABASE

STOP

526

US 9,124,297 B2

1
TRAPPING-SET DATABASE FOR A
LOW-DENSITY PARITY-CHECK DECODER

While processing the output of a channel detector, a low-
density parity-check (LDPC) decoder may encounter one or
more trapping sets, which prevents the decoder from converg-
ing on the correct codeword. A trapping set is a binary vector
x of length n (<<N) that represents a sub-graph in a Tanner
graph of the corresponding LDPC code, where N is the length
of the codewords used in the LDPC code. A trapping set is
usually denoted by a pair (a, b) of positive integers, where a is
the Hamming weight of binary vector X, and b is the number
of'unsatisfied checks (USCs), i.e., the Hamming weight of the
syndrome xH”, where H is the parity-check matrix, and T
denotes transposition. It is known that certain trapping sets
(often referred to as dominant trapping sets) have a particu-
larly strong influence on the bit-error rate (BER) and error-
floor characteristics of an LDPC decoder.

If the output of an LDPC decoder contains a known trap-
ping set, then certain measures can be taken to steer the LDPC
decoder away from the trapping set and have it converge on a
valid codeword. However, collection, ranking, and evaluation
of trapping sets for use in an LDPC decoder are non-trivial
and time-consuming tasks. More specifically, for a given
LDPC implementation, all possible trapping sets might num-
ber in the millions. In addition, the pluralities of dominant
trapping sets corresponding to different implementations of
the same LDPC code may differ from one another. For
example, research on LDPC-enabled hard drives has shown
that trapping sets are influenced by the hard-drive’s jitter
profile, inter-symbol interference characteristics, and pulse-
shaping scheme. Since these attributes can vary not only
between hard drives of different manufacturers, but also
between different hard drive models from the same manufac-
turer or even between different production runs of the same
model, each hard drive tends to have a unique plurality of
dominant trapping sets.

Disclosed herein are various embodiments of a machine-
implemented method of generating trapping-set information
for use in LDPC-decoding processing of read signals, e.g.,
generated by sensing a storage medium, such as a magnetic
platter. In one embodiment, the method can be implemented
as an add-on to any other trapping-set search method in which
the discovered trapping sets are evaluated to determine their
influence on the overall bit-error rate and/or error-floor char-
acteristics of the LDPC decoder. The method can advanta-
geously reuse at least some of the computational results
obtained during this evaluation, thereby requiring a relatively
small amount of additional computations, while providing a
significant benefit of discovering many more trapping sets in
addition to the ones that are being evaluated. At least some of
the new trapping sets discovered in this manner tend to be
dominant trapping sets.

Some of the disclosed embodiments include (i) a trapping-
set database generated using the above-mentioned machine-
implemented method and/or (ii) an integrated circuit that
implements a read channel and is configured to use the trap-
ping-set database for decoding processing of read signals.

Other embodiments of the invention will become more
fully apparent from the following detailed description and the
accompanying drawings, in which:

FIG. 1 shows a block diagram of a communication system
according to an embodiment of the disclosure;

FIG. 2 shows a flowchart of a method of searching for new
trapping sets according to an embodiment of the disclosure;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3 graphically illustrates several possible routes/out-
comes of a trapping-set search implemented using the method
of FIG. 2 according to an embodiment of the disclosure;

FIG. 4 shows a block diagram of a detecting, decoding, and
post-processing (DDPP) unit that can be used in the commu-
nication system of FIG. 1 according to an embodiment of the
disclosure;

FIG. 5 shows a flowchart of a method of evaluating new
trapping sets that can be used in conjunction with the method
shown in FIG. 2 according to an embodiment of the disclo-
sure.

The following acronyms/abbreviations are used in the
description of embodiments and in the drawings:

ARM Advanced RISC (reduced instruction set computing)
Machine;

BER Bit-Error Rate;

DDPP Detecting, Decoding, and Post-Processing;

EBN Erroneous Bit Node;

ISI Inter-Symbol Interference;

LDPC Low-Density Parity Check;

LLR Log-Likelihood Ratio;

MSC Mis-Satisfied Check;

OLTSG On-Line Trapping-Set Generation;

PP Post-Processing;

RAM Random Access Memory;

ROM Read-Only Memory;

SNR Signal-to-Noise Ratio;

TS Trapping Set;

USC Un-Satisfied Check;

FIG. 1 shows a block diagram of a communication system
100 according to an embodiment of the disclosure. System
100 has a storage medium 140 (e.g., a flash drive, magnetic
platter, etc). Storage medium 140 receives data for storage
through a write channel 102 comprising a data source (e.g.,
input port) 110, a low-density parity-check (LDPC) encoder
120, and a write processor 130. The stored data can be
retrieved from storage medium 140 through a read channel
104 comprising a front-end module 160, a detecting, decod-
ing, and post-processing (DDPP) unit 170, and a data desti-
nation (e.g., output port) 180. The operations of write channel
102 and read channel 104 are controlled by a channel con-
troller 150. In one embodiment, channel controller 150 is an
ARM (Advanced RISC Machine) processor.

In operation, data source 110 provides a set of bits 112,
often referred to as an original information word, to LDPC
encoder 120. LDPC encoder 120 encodes original informa-
tion word 112 using an LDPC code to generate a correspond-
ing codeword 122, often referred to as the channel-input
codeword. LDPC encoding is known in the art and is
described in more detail, e.g., in International Patent Appli-
cation Publication No. WO 2010/019168, which is incorpo-
rated herein by reference in its entirety. Original codeword
122 is supplied to write processor 130, which converts code-
word 122 into an appropriate write signal 132 and applies the
write signal to storage medium 140. Write signal 132 control-
lably alters the state of storage medium 140, thereby causing
codeword 122 to be stored in the storage medium.

To retrieve codeword 122 from storage medium 140, a
sensor senses the corresponding location(s) in the storage
medium to obtain a read signal 142, which is supplied to
front-end module 160. Front-end module 160 filters read
signal 142 to convert it into a filtered signal 162.

A channel detector located in DDPP unit 170 converts
filtered signal 162 into a corresponding set of log-likelihood
ratio (LLR) values and supplies said LLR values to DDPP
unit 170.

US 9,124,297 B2

3

For example, an LL.R value may comprise (i) a sign bit that
represents the detector’s best guess (hard decision) regarding
the bit value stored at the corresponding sensed location in
storage medium 140 and (ii) one or more magnitude bits that
represent the detector’s confidence in the hard decision. In
one embodiment, the channel detector may output each LLR
value as a five-bit value, where the most-significant bit is the
sign bit and the four least-significant bits are the confidence
bits. For example, a five-bit LLR value of 00000 indicates a
hard decision of 0 with minimum confidence, while a five-bit
LLR value of 01111 indicates a hard decision of 0 with
maximum confidence. Intermediate values (e.g., between
0000 and 1111) represented by confidence bits correspond to
respective intermediate confidence levels. Similarly, a five-
bit LLR value of 10001 indicates a hard decision of 1 with
minimum confidence, while a five-bit LLR value of 11111
indicates a hard decision of 1 with maximum confidence,
wherein the binary value of 10000 is unused. Other numbers
of bits and other representations of confidence levels may
alternatively be used as well.

An LDPC decoder located in DDPP unit 170 performs
LDPC decoding on the LLR values generated by the channel
detector, which, if necessary, is followed by the application of
one or more post-processing (PP) methods. More specifically,
DDPP unit 170 is configured to apply PP methods when the
LDPC-decoding process fails, meaning, e.g., that, after a
maximum allotted number of decoding iterations, the output
word of the LDPC decoder (not explicitly shown in FIG. 1)
still has one or more unsatisfied checks (USCs). Depending
on the actual number of USCs, DDPP unit 170 might (1) send
a request to channel controller 150 to have the sensor reread
the corresponding location(s) in storage medium 140 and
then repeat the decoding process for the corresponding newly
generated LLR values or (2) alter the input of the LDPC
decoder and restart the LDPC iterations with the altered input,
but without a reread. DDPP unit 170 typically uses the first
option when the output word of the failed LDPC decoder has
a relatively large number (e.g., more than about sixteen) of
USCs. DDPP unit 170 typically uses the second option when
the output word of the failed LDPC decoder has a relatively
small number of USCs. After the LDPC decoder converges on
avalid codeword, DDPP unit 170 converts that codeword into
the corresponding original information word and directs said
information word, via an output signal 172, to data destina-
tion 180.

One of the PP methods that DDPP unit 170 may employ
under the second option is a so-called list-decoding method,
which is described in more detail in the above-cited Interna-
tional Patent Application Publication No. WO 2010/019168.
Briefly, the list-decoding method is used for detecting and
escaping from trapping sets. More specifically, an observed
pattern of errors in the output word of the failed LDPC
decoder is matched against a database of trapping sets that is
maintained in a dedicated memory (not shown in FIG. 1) of
DDPP unit 170. The database of trapping sets may contain the
indices of the USCs in each trapping set and the indices of the
erroneous bit nodes (EBNs) associated with those USCs. If a
match is found in the memory, then the bit-node indices of the
trapping set are retrieved from the database. One or more
hard-decision values corresponding to the EBNs are flipped
or erased, and the corresponding confidence bits are appro-
priately changed to modify the initial LLR values. Then,
DDPP unit 170 restarts the LDPC decoding process using the
modified LLR values in a new input applied to the LDPC
decoder. Often, this modification of the LLR values will
“break” the trapping set(s) and cause the restarted LDPC
decoder to converge on a valid codeword.

20

40

45

4

Inone embodiment, the database of trapping sets employed
by DDPP unit 170 is stored in a trapping-set read-only
memory (TS-ROM, not explicitly shown in FIG. 1) and con-
tains trapping-set (TS) information on the trapping sets that
have been discovered off-line using software and/or hardware
simulation tools and then loaded into the TS-ROM of DDPP
unit 170 at the production facility. Representative methods of
identifying and recording trapping sets using off-line simu-
lation tools are disclosed, e.g., in the above-cited Interna-
tional Patent Application Publication No. WO 2010/019168.
For at least some of the reasons alluded to in the background
section, the list of trapping set discovered off-line using the
above-indicated methods is usually incomplete.

In an alternative embodiment, the database of trapping sets
employed in DDPP unit 170 comprises two TS sub-lists. The
first TS sub-list is similar to the just-mentioned TS database
generated offline and loaded into the TS-ROM of DDPP unit
170 at the production facility. The second TS sub-list is stored
in a nonvolatile TS memory (e.g., TS-RAM, not explicitly
shown in FIG. 1) of DDPP unit 170 and contains TS infor-
mation on the trapping sets that have been discovered on-line
by communication system 100 itself, e.g., using an appropri-
ate embodiment of method 200 described below in reference
to FIG. 2.

In one configuration, communication system 100 can gen-
erate TS information for storage in the TS-RAM of DDPP
unit 170 while operating in a special on-line TS-generating
(OLTSG) operating mode. Communication system 100
enters the OLTSG operating mode when write channel 102
and read channel 104 are idle, e.g., not receiving external
write and read requests from data source 110 and data desti-
nation 180. In effect, the OLTSG operating mode exploits
intermittent availability of the data-processing resources of
read channel 104 to discover and store in the TS-RAM of
DDPP unit 170 new TS information, e.g., information on the
trapping sets that are important to the performance character-
istics of this particular specimen of communication system
100 but which information is not stored in the TS-ROM of the
DDPP unit. When communication system 100 enters the nor-
mal operating mode and the list-decoding method is invoked,
DDPP unit 170 searches both TS-ROM and TS-RAM memo-
ries while attempting to escape from any currently occurring
trapping set(s). Since the TS-RAM of DDPP unit 170 can be
used to expand the accessible database of important (e.g.,
dominant) trapping sets, the BER and error-floor character-
istics of communication system 100 are likely to be improved
compared to the corresponding characteristics of an embodi-
ment without a TS-RAM memory.

FIG. 2 shows a flowchart of a method 200 of searching for
unknown trapping sets according to an embodiment of the
disclosure. In one embodiment, method 200 can be used to
implement an OLTSG (On-Line Trapping-Set Generation)
operating mode in DDPP unit 400 (FIG. 4). In an alternative
embodiment, method 200 can be implemented in a read-
channel simulator, e.g., for offline generation of a TS data-
base. Some or all entries of this database can be loaded into
TS-ROM 430 of DDPPunit 400 (see FI1G. 4) at the production
facility prior to shipping the corresponding communication
system (e.g., system 100, FIG. 1) to a customer. Some
examples of read-channel simulators in which the latter
embodiment of method 200 can be implemented are dis-
closed, e.g., in Russian Patent Application Serial Nos.
2012135285 (filed on Aug. 16, 2012) and 2012139074 (filed
on Sep. 12, 2012), both of which are incorporated herein by
reference in their entirety.

US 9,124,297 B2

5

Method 200 begins at step 202 when DDPP unit 400 enters
an OLTSG operating mode or the corresponding software is
loaded into a read-channel simulator.

At step 204, a trapping set is selected from a database of
known trapping sets. Any suitable criteria can be used for
selecting a trapping set from the TS database. For example,
the known trapping sets can first be sorted based on a selected
characteristic or criterion to form an ordered list and then
selected, one by one, based on the order in which they appear
in the ordered list.

At step 206, a noise level is selected. In a representative
embodiment, the noise level has two contributing compo-
nents. The first contributing component is a localized noise
component that represents the level (€) of noise that is to be
injected only into the TS positions of a codeword. Different
occurrences of step 206 may use different respective values of
€. The second contributing component is a distributed noise
component that represents the overall signal-to-noise ratio
(SNR) in the read channel. This component may include
contributions from the write noise, ISI noise, read noise, etc.
A range of SNR values of interest can be identified based on
the expected or actual performance characteristics of the read
channel in question. Then, at different occurrences of step
206, different SNR values from the identified range can be
selected to appropriately sample this range of interest.

At step 208, a codeword (w) is generated. For example, an
ordered list of original information words can be used to
generate different respective codewords for different respec-
tive occurrences of step 208. In this case, step 208 can be
implemented using the sub-steps of: (i) selecting an original
information word from the ordered list of original informa-
tion words, e.g., based on the order of appearance in the
ordered list, and (ii) applying an LDPC generator matrix to
the selected original information word to generate the corre-
sponding codeword.

In some embodiments, step 208 (and also step 216) may be
optional, e.g., as explained below in the description of DDPP
400 (FIG. 4).

Atstep 210, aset of noisy LLR values is generated based on
(1) codeword w generated at step 208, (ii) the noise-level
components selected at step 206, and (iii) the trapping set
selected at step 204. In one embodiment of step 210, the
confidence bits of each LLR value are calculated using Eq.

(D):

=1-Le-F,

ey
where k is a bit index whose value designates a bit position in
the codeword; ., is a scaling factor to be applied to the binary
value expressed by the magnitude bits of the k-th LLR value;
1, is the indicator function indicating whether (in which case,
1,=1) or not (in which case, [,=0) the k-th bit belongs to the
trapping set selected at step 204; e represents the localized
noise component that is being injected into the TS positions of
codeword w; and F, represents the distributed noise compo-
nent. For a read channel characterized by significant ISI and/
or jitter, F,, is codeword-dependent, i.e., F,=F,(W). F, can be
generated based on the actual or expected performance char-
acteristics of the read channel in question. Indicator function
1, has a value of one for the bit positions corresponding to the
trapping set selected at step 204, and a value of zero for all
other bit positions. In one embodiment, F,=0.

At step 212, the set of noisy LLR values generated at step
210 is subjected to LDPC decoding processing. The LDPC
decoding processing is carried out in a conventional manner
and is terminated when the decoder converges on a valid
codeword or the maximum allowed number of decoding

5

10

15

20

25

30

35

40

45

50

55

60

65

6

iterations is reached. The hard decision generated by the
decoder when the processing is terminated is output word d.

At step 214, output word d generated at step 212 is com-
pared with codeword w generated at step 208. If d=w, then the
processing of method 200 is directed to step 216. If d=w, then
the processing is directed to step 222.

Step 216 serves to cycle method 200 through different
codewords. If it is desirable to search for new trapping sets
corresponding to another codeword, then the processing is
directed back to step 208 to generate another codeword using
the same known trapping set and noise level. Otherwise, the
processing is directed to step 218.

Step 218 serves to cycle method 200 through different
noise levels. If it is desirable to search for new trapping sets
using a different noise level, then the processing is directed
back to step 206 to generate another codeword for the same
known trapping set, but using a different noise level. Other-
wise, the processing is directed to step 220.

Step 220 serves to cycle method 200 through different
known trapping sets. If it is desirable to search for new trap-
ping sets corresponding to a different known trapping set,
then the processing is directed back to step 204. Otherwise,
the processing is directed to step 226, where the processing is
terminated.

At step 222, differences between output word d generated
at step 212 and codeword w generated at step 208 are evalu-
ated to determine whether or not output word d contains an
unknown trapping set. This evaluation can be carried out, e.g.,
by checking a trapping set detected in output word d against
the current TS database. If no match is found in the TS
database, then it is concluded that output word d contains an
unknown trapping set, and the processing of method 200 is
directed to step 224. If a match is found in the TS database,
then step 224 is bypassed, and the processing is directed to
step 216.

At step 224, the unknown trapping set detected at step 222
in output word d is either saved in the TS database or tempo-
rarily saved in the memory for further evaluation. In one
embodiment, this further evaluation can be carried out, e.g.,
using method 500, which is described below in reference to
FIG. 5.

FIG. 3 graphically illustrates several possible routes/out-
comes of the above-outlined search process implemented
using method 200 (FIG. 2) according to an embodiment of the
disclosure. More specifically, the larger oval, whose bound-
ary is indicated in FIG. 3 by a dashed line 302, graphically
shows the TS space representing all trapping sets of a particu-
lar LDPC code. The smaller oval, whose boundary is indi-
cated in FIG. 3 by a solid line 304, graphically shows the TS
space representing the known trapping sets, e.g., the trapping
sets enumerated in the TS database stored in TS-ROM 430
and TS-RAM 440 (see FIG. 4). The various circles labeled
TSi(wherei=l, ..., 6) represent respective trapping sets, with
the location of each circle with respect to ovals 302 and 304
indicating whether the trapping set is known or not. The
various block arrows in FIG. 3 graphically illustrate repre-
sentative routes that a TS-search process of method 200 (FIG.
2) might take in the TS space.

For example, block arrow 312 indicates a TS-search route,
in which: (A) trapping set TS1 is initially selected at step 204
from the TS database at step 204; (B) decoding of the corre-
sponding noisy LLR values at step 212 produces a decoding
error in the LDPC decoder; and (C) a TS filter (e.g., imple-
mented by steps 214 and 222, FIG. 2) determines that the
decoding error is due to the presence, in the output word
generated by the LDPC decoder, of one of the known trapping

US 9,124,297 B2

7

sets, e.g., TS4. This TS-search route does not result in the
discovery of a new trapping set to be stored in the TS data-
base.

As another example, block arrows 314 and 316 indicate a
TS-search route that leads to the discovery of an unknown
stable trapping set, labeled TSS. More specifically, block
arrow 314 indicates a first part of this TS-search route, in
which: (A) trapping set TS2 is initially selected at step 204
from the TS database; (B) decoding of the corresponding
noisy LLR values at step 212 produces a decoding error in the
LDPC decoder; and (C) the TS filter (e.g., implemented by
steps 214 and 222, FIG. 2) determines that the decoding error
is due to the presence, in the output word generated by the
LDPC decoder, of an unknown trapping set, TS5. Block
arrow 316 indicates a second part ofthis TS-search route, e.g.,
corresponding to step 224, in which: (D) decoding of noisy
LLR values corresponding to TS5 produces a decoding error
in the LDPC decoder and (E) it is determined that the decod-
ing error is again due to the presence in the output word of
TS5. This TS-search route results in the discovery of a new
trapping set to be stored in the TS database.

As yetanother example, block arrows 318 and 320 indicate
a TS-search route that leads to the discovery of an unknown
unstable trapping set, labeled TS6. More specifically, block
arrow 318 indicates a first part of this TS-search route, in
which: (A) trapping set TS3 is initially selected from the TS
database at step 204; (B) decoding of the corresponding noisy
LLR values at step 212 produces a decoding error in the
LDPC decoder; and (C) the TS filter (e.g., implemented by
steps 214 and 222, FIG. 2) determines that the decoding error
is due to the presence, in the output word generated by the
LDPC decoder, of an unknown trapping set, TS6. Block
arrow 320 indicates a second part ofthis TS-search route, e.g.,
corresponding to step 224, in which: (D) decoding of the
noisy LLR values corresponding to TS6 produces a decoding
error in the LDPC decoder and (E) it is determined that the
decoding error is due to the presence in the output word
generated by the LDPC decoder of a trapping set that is
different from TS6. Depending on the particular embodiment
of method 200, this TS-search route may result in the new
trapping set being added to the TS database. For example, the
newly found, non-dominant trapping set might be stored only
if there is more than a specified amount of unused capacity in
the TS memory.

FIG. 4 shows a block diagram of a DDPP unit 400 that can
be used as DDPP unit 170 according to one embodiment of
the disclosure. DDPP unit 400 can be configured to operate in
a normal operating mode or in an OLTSG operating mode.
Each of these operating modes is described in more detail
below.

In a normal operating mode, an LDPC decoder in detector/
decoder unit 410 of DDPP unit 400 receives LLR values from
the channel detector, which has generated said LLR values
based on filtered signal 162 (see FIG. 1). Detector/decoder
410 applies LDPC decoding processing to the LLR values
and outputs the decoding results, via a decoder-output signal
412, to a post-processor 420. If decoder-output signal 412
represents a valid codeword, i.e., a codeword that has passed
the LDPC parity checks, then post-processor 420 outputs the
unaltered decoder-output signal 412 as a post-processor out-
put signal 428. The valid codeword is then used, as known in
the art, to compute the corresponding original information
word 172 for data destination 180 (FIG. 1). If decoder-output
signal 412 does not represent a valid codeword, then post-
processor 420 invokes one or more PP methods from a PP-
methods library 424.

10

15

20

25

30

35

40

45

50

55

60

65

8

In one embodiment, PP-methods library 424 is a memory
that contains one or more executable programs representing
the corresponding post-processing methods, such as the
above-mentioned list-decoding method. If post-processor
420 needs to perform a particular PP method, then the post-
processor retrieves the corresponding executable program
from PP-methods library 424 and runs that program. If post-
processor 420 executes the list-decoding method, then, dur-
ing the execution, the post-processor may access a TS-ROM
430 and a TS-RAM 440 to find matches to the errors observed
in the output word of signal 412. If a match is found, then
DDPP unit 400 can help the decoding process to escape from
(i.e., break) the trapping set(s), e.g., by (i) using the TS infor-
mation stored in TS-ROM 430 and/or TS-RAM 440 to iden-
tify the EBNs of the trapping set(s); (ii) flipping one or more
EBNs; (iii) communicating to detector/decoder 410, via a
feedback signal 422, the corresponding changes made to the
LLR values; and (iv) configuring detector/decoder 410 to
restart the decoding process with the changed LL.R values.

As indicated above, TS-ROM 430 may come from the
production facility preloaded with TS information that had
been generated off-line. In contrast, TS-RAM 440 may come
from the production facility without any TS information
stored therein, and the TS information to be stored in the
TS-RAM can be generated by the corresponding communi-
cation system (e.g., communication system 100, FIG. 1) on-
line, while operating in the above-mentioned OLTSG oper-
ating mode.

In the OLTSG operating mode, DDPP unit 400 can dis-
cover new trapping sets, e.g., using an embodiment of method
200 (FIG. 2). To illustrate how method 200 can be imple-
mented in DDPP unit 400, the following description refers to
specific processing steps of method 200 while pointing out
individual components of the DDPP unit that can carry out the
execution of those processing steps.

In an attempt to find a new trapping set for storage in
TS-RAM 440, post-processor 420 first executes step 204 to
select a known trapping set from (i) the TS sub-list stored in
TS-ROM 430 or (ii) the TS sub-list stored in TS-RAM 440,
and retrieves the corresponding TS information therefrom.
Post-processor 420 then provides the retrieved TS informa-
tion, via a control signal 466, to a noise injector 464.

Since trapping sets can be influenced by the read-channel’s
jitter profile and inter-symbol interference (ISI) characteris-
tics, the subsequent processing steps are codeword-depen-
dent and may need to be cyclically repeated, with each cycle
invoking a different codeword, but using the same trapping
set. The corresponding cycle includes the processing steps
located in the processing flow between steps 208 and 216. As
indicated above, in some embodiments, steps 208 and 216 are
optional and can be excluded from the processing flow.

A codeword generator 460 is configured to implement step
208 by generating a valid codeword 462 and providing
respective copies of it to a noise injector 464 and post-pro-
cessor 420. Any suitable algorithm can be used in codeword
generator 460 to provide different valid codewords for difter-
ent cycles of the cyclical process. In one embodiment, code-
word generator 460 can be a part of the corresponding write
channel, e.g., a part of LDPC encoder 120 in write channel
102 (FIG. 1).

In an alternative embodiment, DDPP unit does not have
codeword generator 460 and instead uses signal 162, e.g., as
described below.

In one embodiment, noise injector 464 implements step
210 based on signals 462 and 466. In an alternative embodi-
ment (in which codeword generator 460 is absent), noise
injector 464 implements step 210 based on signals 162 and

US 9,124,297 B2

9

466. More specifically, noise injector 464 injects a selected
amount of noise into the bit positions identified in control
signal 466, e.g., by altering the confidence bits of the corre-
sponding LLR values of the codewords represented by signal
462 or 162. Noise injector 464 then provides the resulting
“noisy” set of LLR values, via a signal path 468, to the LDPC
decoder in unit 410. The decoder then tries to decode the
received LLRs in a conventional manner. This decoding
attempt implements step 212.

Note that a trapping set is often composed of multiple
inter-linked cycles on the corresponding sub-graph of the
Tanner graph. For certain read-channel configurations with
relatively low noise levels, the message-passing algorithm
typically used in an LDPC decoder (e.g., the LDPC decoder
in unit 410) can get trapped in these cycles because messages
from the USC nodes of the sub-graph are not able to overcome
the relatively strong bias of the mis-satisfied check (MSC)
nodes of the sub-graph, such that the bit nodes corresponding
to the trapping set become “trapped” in a wrong state. The
LDPC decoder, lacking enough influence from the portions of
the Tanner graph external to the TS sub-graph, cannot escape
from this state by itself, thereby causing a TS-error event. The
noise injected, by noise injector 464, into the TS positions of
the set of LLR values representing the selected codeword can
(1) help the message-passing algorithm to escape the inter-
linked cycles of the TS sub-graph and (ii) be used to quantify
the stability of the trapping set.

One possible outcome of the decoder in unit 410 trying to
decode the noisy LLRs is that the decoding process converges
on the correct codeword (e.g., that initially generated by
codeword generator 460). This outcome does not lead to a
discovery of a new trapping set. Another possible outcome of
the decoding process is that it fails to converge on the correct
codeword. In this case, the output word represented by signal
412 generated by the decoder in unit 410 at the end of the
failed decoding process is directed to post-processor 420 for
evaluation. For example, post-processor 420 can evaluate the
received output word by comparing it with the correct code-
word, e.g., received from codeword generator 460 via signal
462.

In one embodiment, post-processor 420 can perform this
comparison operation by applying an XOR (exclusive OR)
function to the two binary words that are being compared. If
two corresponding bits of the two words match, then the
output of the XOR function for that particular bit position is
zero. If the two corresponding bits do not match, then the
output of the XOR function for that particular bit position is
one, which indicates the presence of an EBN in the output
word received via signal 412. Based on the identified EBNs,
post-processor 420 can identify a candidate trapping set, e.g.,
by (i) tracing the edges of the corresponding sub-graph
around the EBNs and (ii) identifying the corresponding USC
and MSC nodes. Post-processor 420 then directs all or part of
this TS information, via a communication path 426, to a TS
filter 450.

TS filter 450 is configured to determine whether or not the
candidate trapping set identified by post-processor 420 is
already present in TS-ROM 430 or TS-RAM 440. This deter-
mination corresponds to step 222. If TS filter 450 finds a copy
of the candidate trapping set in TS-ROM 430 or TS-RAM
440, then this outcome does not lead to a discovery of a new
trapping set. However, if TS filter 450 does not find a copy of
the candidate trapping set in TS-ROM 430 or TS-RAM 440,
then the TS filter can do one of the following:

(1) save the candidate trapping set in TS-RAM 440, thereby

expanding the TS sub-list stored therein; or

10

15

20

25

30

35

40

45

50

55

60

65

10

(ii) instruct post-processor 420, via communication path
426, to initiate further evaluation of the candidate trap-
ping set.

Option (ii) can be used, e.g., when either the available
memory volume or the memory-access speed is limited, or
both, so that it is practical to store only some (e.g., only
dominant) trapping sets in TS-RAM 440. This part of the
processing corresponds to step 224.

In one embodiment, said further evaluation of the candi-
date trapping set can be performed, e.g., by testing its stabil-
ity. In one embodiment, the stability testing includes (i) gen-
erating a codeword, (ii) injecting noise into one or more of the
bit positions of the codeword corresponding to the candidate
trapping set, and (iii) attempting to decode the resulting noisy
set of LLR values. The candidate trapping set is deemed to be
stable if the decoding process fails and the corresponding
output word represented by signal 412 generated by the
LDPC decoder in unit 410 at the end of the failed decoding
process again contains the candidate trapping set. Otherwise,
the candidate trapping set is deemed unstable.

If it is found that the candidate trapping set is stable in the
above-explained sense of the term, then post-processor 420
instructs TS filter 450, via communication path 426, to add
this candidate trapping set to the TS sub-list saved in TS-
RAM 440, thereby expanding the TS database. One of ordi-
nary skill in the art will appreciate that a stable trapping set
found in this manner is also likely to be a dominant trapping
set.

Ifitis found that the candidate trapping set is unstable, then
post-processor 420 can instruct TS filter 450 to discard it and
not save it in TS-RAM 440. The search for new trapping sets
then resumes, e.g., with codeword generator 460 generating a
new codeword for the noise injection using the same trapping
set or with post-processor 420 selecting and retrieving a next
(different) trapping set from the TS sub-lists stored in TS-
ROM 430 and TS-RAM 440.

FIG. 5 shows a flowchart of a method 500 of evaluating
new trapping sets according to one embodiment of the dis-
closure. In one embodiment, method 500 can used to imple-
ment a TS-stability test mentioned above, e.g., in reference to
FIGS. 3 and 4.

At step 502, a candidate trapping set is received for evalu-
ation. For example, the candidate trapping set can be retrieved
from the memory where it was saved at step 224 of method
200 (FIG. 2).

Atstep 506, alevel (€,) of the localized noise component is
selected, e.g., in a manner similar to that used at step 206 of
method 200. The value of €, used at step 506 may or may not
be related to the value of € used at step 206 of the correspond-
ing processing cycle in method 200. Different occurrences of
step 506 may use different respective values of €,, e.g., to
enable method 500 to quantify the stability of the candidate
trapping set.

At step 508, a codeword (w) is generated, e.g., in a manner
similar to that used at step 208 of method 200.

At step 510, a set of noisy LLR values is generated, e.g., in
a manner similar to that expressed by Eq. (1), but using €,
instead of € and the indicator function I, corresponding to the
candidate trapping set. The distributed noise component, F,,
may or may not be zero.

At step 512, the set of noisy LLR values generated at step
510 is subjected to LDPC decoding processing. The LDPC
decoding processing is carried out in a conventional manner
and is terminated when the decoder converges on a valid
codeword or the maximum allowed number of decoding
iterations is reached. The hard decision generated by the
decoder when the processing is terminated is output word d.

US 9,124,297 B2

11

At step 514, output word d generated at step 512 is com-
pared with codeword w generated at step 508. If d=w, then the
processing of method 500 is directed to step 516. If d=w, then
the processing is directed to step 522.

Step 516 serves to cycle method 500 through different
codewords. If it is desirable to evaluate the stability of the
candidate trapping set with respect to another codeword, then
the processing is directed back to step 508. Otherwise, the
processing is directed to step 518.

Step 518 serves to cycle method 500 through different
values of €. If it is desirable to evaluate the stability of the
candidate trapping set using a different value of €,, then the
processing is directed back to step 506. Otherwise, the pro-
cessing is directed to step 526, where it is terminated.

At step 520, differences between output word d generated
at step 512 and codeword w generated at step 508 are evalu-
ated to determine whether or not output word d contains the
candidate trapping set of step 502. If the same candidate
trapping set is found in output word d (indicating that the
candidate trapping set is a stable trapping set), then the pro-
cessing of method 500 is directed to step 522. Otherwise, the
processing is directed to step 516.

At step 522, the current value of €, is compared with a
threshold level, €. If €, <€, then the processing of method
500 is directed to step 524. Otherwise, the processing is
directed to step 516.

At step 524, the candidate trapping set is added to the TS
database, and the processing of method 500 is directed to step
526, where the processing is terminated. Note that step 522
serves as a filter that causes the TS database to accept only
relatively “dangerous” trapping sets, with the current value of
€, being used as a quantifier o how dangerous the trapping set
might be for the LDPC decoder in terms of its influence on
BER and error-floor characteristics. One of ordinary skill in
the art will appreciate that a stable trapping set characterized
by a relatively small value of €, is also likely to be a dominant
trapping set, because it tends to “attract” the decoder to the
corresponding state, thereby increasing the frequency with
which this trapping set tends to appear in the output words
generated by the failed decoder. For example, the value of €,
used at step 522 can be an empirical parameter, the selection
of which might be influenced, among other things, by the
memory volume available for storing the resulting TS data-
base in the corresponding read channel, such as the memory
volume of TS-ROM 430 or TS-RAM 440 in DDPP unit 400
(FIG. 4).

Some benefits of methods 200 and 500 derive from the fact
that these methods can be implemented as add-ons to other
TS-search methods. For example, a paper by Chad A. Cole,
Eric K. Hall, Stephen G. Wilson, and Thomas R. Giallorenzi,
entitled “A General Method for Finding Low Error Rates of
LDPC Codes,” submitted for publication to the IEEE on Feb.
1, 2008, and incorporated herein by reference in its entirety,
discloses a TS-search method having a step of estimating an
error boundary. Methods 200 and 500 can advantageously
reuse at least some of the computational results obtained
during that step, thereby requiring a relatively small amount
of'additional computations, while providing a significant ben-
efit of discovering many more trapping sets in addition to
those discovered using only the TS-search method of Cole et
al.

While this invention has been described with reference to
various alternate embodiments, this description is not
intended to be construed in a limiting sense.

For example, at least some embodiments are applicable to
coding schemes other than LDPC coding.

15

40

45

55

65

12

Although various embodiments have been described in
reference to binary codes, at least some embodiments can also
be used with non-binary codes. For a non-binary code, the
LLR that w,=a, where aeGF(q), is defined as log(P(w=a)/P
(w,=0)). A definition of a non-binary code and more details on
the use of non-binary codes in digital-communication and
data-storage systems can be found, e.g., in Chapter 3 of W. E.
Ryan, S. Lin, “Channel Codes: Classical and Modern,” Cam-
bridge University Press, 2009, pp. 121-133, which is incor-
porated herein by reference in its entirety.

Unless explicitly stated otherwise, each numerical value
and range should be interpreted as being approximate as if the
word “about” or “approximately” preceded the value of the
value or range.

Although the elements in the following method claims, if
any, are recited in a particular sequence with corresponding
labeling, unless the claim recitations otherwise imply a par-
ticular sequence for implementing some or all of those ele-
ments, those elements are not necessarily intended to be
limited to being implemented in that particular sequence.

Reference herein to “one embodiment” or “an embodi-
ment” means that a particular feature, structure, or character-
istic described in connection with the embodiment can be
included in at least one embodiment of the invention. The
appearances of the phrase “in one embodiment” in various
places in the specification are not necessarily all referring to
the same embodiment, nor are separate or alternative embodi-
ments necessarily mutually exclusive of other embodiments.

Also for purposes of this description, the terms “couple,”
“coupling,” “coupled,” “connect,” “connecting,” or “con-
nected” refer to any manner known in the art or later devel-
oped in which energy is allowed to be transferred between
two or more elements, and the interposition of one or more
additional elements is contemplated, although not required.
Conversely, the terms “directly coupled,” “directly con-
nected,” etc., imply the absence of such additional elements.

Embodiments of the invention can be manifest in other
specific apparatus and/or methods. The described embodi-
ments are to be considered in all respects as illustrative and
not restrictive. All changes that come within the meaning and
range of equivalency of the claims are to be embraced within
their scope.

A person of ordinary skill in the art would readily recog-
nize that steps of various above-described methods can be
performed by programmed computers. Herein, some embodi-
ments are intended to cover program storage devices, e.g.,
digital data storage media, which are machine or computer
readable and encode machine-executable or computer-ex-
ecutable programs of instructions where said instructions
perform some or all of the steps of methods described herein.
The program storage devices may be, e.g., digital memories,
magnetic storage media such as magnetic disks or tapes, hard
drives, or optically readable digital data storage media. The
embodiments are also intended to cover computers pro-
grammed to perform said steps of methods described herein.

The description and drawings illustrate embodiments of
the invention. Furthermore, all examples recited herein are
principally intended expressly to be only for pedagogical
purposes to aid the reader in understanding an embodiment of
the invention and the concepts contributed by the inventor(s)
to furthering the art, and are to be construed as being without
limitation to such specifically recited examples and condi-
tions. Moreover, all statements herein reciting embodiments
of the invention, as well as specific examples thereof, are
intended to encompass equivalents thereof.

The functions of the various elements shown in the figures,
including any functional blocks labeled as “processors,” may

US 9,124,297 B2

13

be provided through the use of dedicated hardware as well as
hardware capable of executing software in association with
appropriate software. When provided by a processor, the
functions may be provided by a single dedicated processor, by
a single shared processor, or by a plurality of individual
processors, some of which may be shared. Moreover, explicit
use of the term “computer,” “processor,” or “controller”
should not be construed to refer exclusively to hardware
capable of executing software, and may implicitly include,
without limitation, digital signal processor (DSP) hardware,
network processor, application specific integrated circuit
(ASIC), field programmable gate array (FPGA), read only
memory (ROM) for storing software, random access memory
(RAM), and non volatile storage. Other hardware, conven-
tional and/or custom, may also be included.

It should be appreciated by those of ordinary skill in the art
that any block diagrams herein represent conceptual views of
circuitry representing one or more embodiments of the inven-
tion. Similarly, it will be appreciated that any flowcharts, flow
diagrams, state transition diagrams, pseudo code, and the like
represent various processes which may be substantially rep-
resented in computer readable medium and so executed by a
computer or processor, whether or not such computer or
processor is explicitly shown.

Although embodiments of the invention have been
described herein with reference to the accompanying draw-
ings, it is to be understood that embodiments of the invention
are not limited to the described embodiments, and one of
ordinary skill in the art will be able to contemplate various
other embodiments of the invention within the scope of the
following claims.

What is claimed is:

1. A method of generating trapping-set information for use
in decoding encoded codewords, the method comprising:

(A) selecting a first trapping set from a trapping-set data-
base;

(B) selecting a first codeword;

(C) using a noise injector circuit to generate a first set of
log-likelihood-ratio values by injecting noise into a set
of bit positions of the first codeword, wherein the set of
bit positions corresponds to the first trapping set;

(D) generating a first output word by subjecting the first set
of log-likelihood-ratio values to decoding processing;
and

(E) when the first output word is not a valid codeword,
comparing the first output word and the first codeword to
detect a second trapping set different from the first trap-
ping set.

2. The method of claim 1, further comprising:

(F) updating the trapping-set database by including therein
the second trapping set after verifying that the second
trapping set is not present in the trapping-set database.

3. The trapping-set database generated using the method of
claim 2.

4. A device comprising a memory coupled to a read chan-
nel, wherein:

said memory is configured to store therein the trapping-set
database; and

the device is configured to use the trapping-set database for
decoding processing of a read signal received by the read
channel.

5. The method of claim 2, further comprising storing the
trapping-set database in a memory coupled to a read channel
to enable the read channel to use the trapping-set database for
decoding processing of a read signal received by the read
channel.

15

25

30

35

40

45

50

55

14

6. The method of claim 2, wherein the method is imple-
mented in a read channel configured to use the trapping-set
database for decoding processing of a read signal received by
the read channel.

7. The method of claim 6, wherein the method is imple-
mented during the read-channel’s idle time.

8. The method of claim 2, wherein steps (A)-(F) are per-
formed using a read-channel simulator.

9. The method of claim 8, further comprising:

loading the trapping-set database into a memory coupled to

a read channel and configured to provide trapping-set
information for decoding processing of a read signal
received by the read channel.

10. The method of claim 9, wherein said loading is per-
formed at a read-channel production facility prior to the read
channel being shipped to a customer.

11. The method of claim 1, further comprising determining
whether or not to add the second trapping set to the trapping-
set database by subjecting the second trapping set to a stabil-
ity test.

12. The method of claim 11, wherein:

the step of determining comprises determining whether the

second trapping set is stable or unstable; and

the method further comprises:

if the second trapping set is stable, then adding the second

trapping set to the trapping-set database; and

if the second trapping set is unstable, then not adding the

second trapping set to the trapping-set database.

13. The method of claim 11, wherein the step of determin-
ing further comprises:

selecting a second codeword;

generating a second set of log-likelihood-ratio values cor-

responding to the second codeword by injecting noise
into a set of bit positions of the second codeword,
wherein the set of bit positions corresponds to the sec-
ond trapping set;

generating a second output word by subjecting the second

set of log-likelihood-ratio values to decoding process-
ing; and

when the second output word is not a valid codeword,

determining whether or not the second output word has
the second trapping set.

14. The method of claim 13, further comprising:

selecting a level of noise for the noise injected into the set

of bit positions of the second codeword;

when the second codeword has the second trapping set,

comparing said level with a threshold value;

if said level is lower than the threshold value, then adding

information about the second trapping set to the trap-
ping-set database; and

if said level is higher than the threshold value, then not

adding the information about the second trapping set to
the trapping-set database.

15. The method of claim 13, further comprising selecting a
level of noise, wherein the noise injected into the set of bit
positions of the second codeword, wherein said injecting
noise into the set of bit positions of the second codeword
comprises:

for each bit position in said set of bit positions of the second

codeword, changing, by an amount proportional to said
level, a respective confidence value expressed by confi-
dence bits in a respective log-likelihood-ratio value.

16. The method of claim 15, further comprising changing
said level.

17. The method of claim 13, wherein the second codeword
is the same as the first codeword.

US 9,124,297 B2

15

18. The method of claim 1, further comprising repeating
steps (A)-(E) for at least one of: a different first trapping set
and a different first codeword.

19. A non-transitory machine-readable medium, having
encoded thereon program code, wherein, when the program
code is executed by a machine, the machine implements a
method of generating trapping-set information for use in
decoding encoded codewords, the method comprising:

(A) selecting a first trapping set from a trapping-set data-

base;

(B) selecting a first codeword;

(C) generating a first set of log-likelihood-ratio values by
injecting noise into a set of bit positions of the first
codeword, wherein the set of bit positions corresponds
to the first trapping set;

(D) generating a first output word by subjecting the first set
of log-likelihood-ratio values to decoding processing;
and

(E) when the first output word is not a valid codeword,
comparing the first output word and the first codeword to
detect a second trapping set different from the first trap-
ping set.

20. A communication system, comprising:

a decoder;

a processor operatively coupled to the decoder;

10

15

20

16

a memory operatively coupled to the processor and con-
figured to store a trapping-set database;
a trapping-set filter operatively coupled to the processor
and the memory; and
a noise injector operatively coupled to the processor and
the decoder, wherein:
the processor is configured to select a first trapping set from
the trapping-set database stored in the memory;
the noise injector is configured to:
receive a first codeword; and
generate a first set of log-likelihood-ratio values corre-
sponding to the first codeword by injecting noise into
a set of bit positions of the first codeword correspond-
ing to the first trapping set selected by the processor;
the decoder is configured to generate a first output word
by subjecting the first set of log-likelihood-ratio val-
ues to decoding processing;
when the first output word is not a valid codeword, the
processor is further configured to compare the first
output word and the first codeword to detect a second
trapping set; and
the trapping-set filter is configured to update the trap-
ping-set database by adding thereto the second trap-
ping set when the second trapping set is not present in
the trapping-set database.

#* #* #* #* #*

